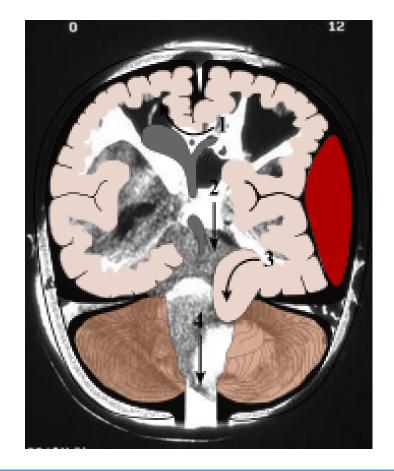
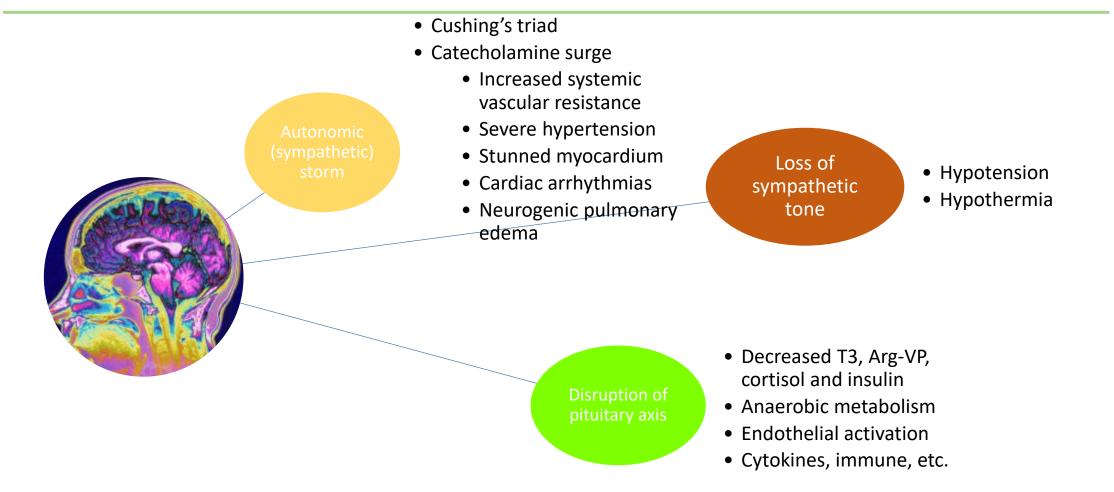


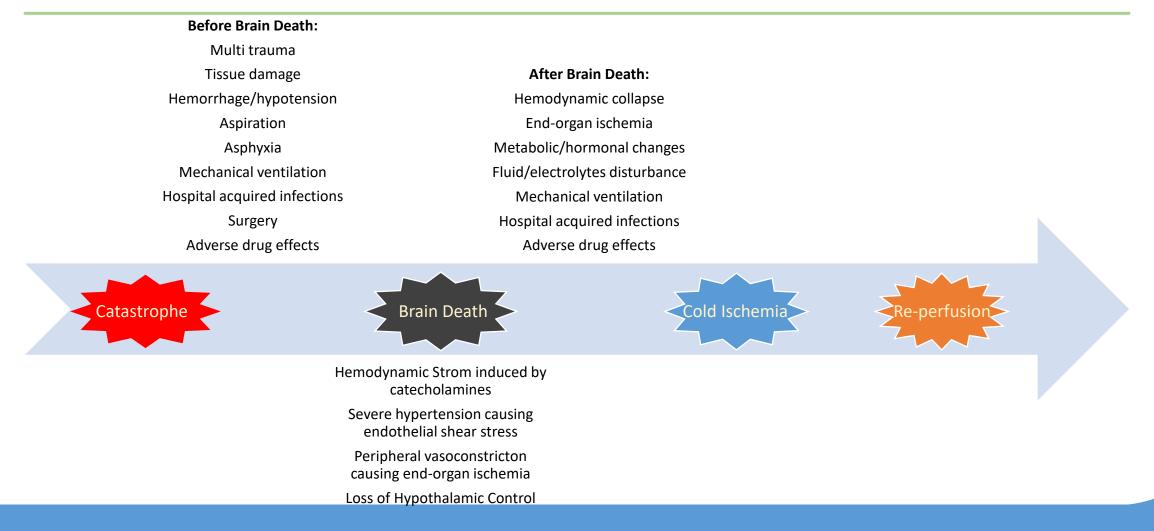
Organ Dysfunction


in the Potential Brain-Dead Organ Donor


Sequence of Events in Brain Death

- Rostral caudal progression of ischemia
 - Medulla oblongata
 - Autonomic storm to maintain CPP
 - Elevated levels of catecholamines
 - Spinal cord

- Sympathetic deactivation
 - Bradycardia
- Loss of vasodilatory tone
 - Ischemia / reperfusion
 - Diffuse endothelial injury
 - Hypotension
- Herniation



Physiologic Changes Associated with Severe Brain Injury and British Severe Brain Injury and Br

Potential Injuries to Transplanted Organ

Cardiovascular dysfunction

Respiratory dysfunction

Endocrine dysfunction

Hyperglycemia

Electrolyte disturbances

Coagulopathy

Inflammatory response

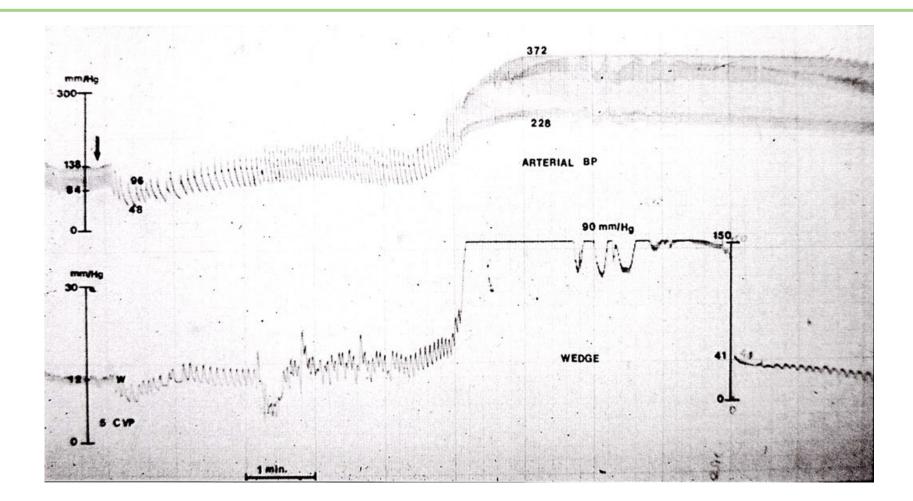
Incidence of Common Physiological Derangements in Brain-dea

Derangment	Cause	Approximate incidence
Hypothermia	Hypothalamic damage; reduced metabolic rate; vasodilation and heat loss	Invariable if not prevented
Hypotension	Vasoplegia; hypovolemia; reduced coronary blood flow; myocardial dysfunction	81%–97%
Diabetes insipidus	Posterior pituitary damage	46%–78%
Disseminated intravascular coagulation	Tissue factor release; coagulopathy	29%–55%
Arrhythmias	'Catecholamine storm'; myocardial damage; reduced coronary blood flow	25%–32%
Pulmonary edema	Acute blood volume diversion; capillary damage	13%–18%

Complications of brain death: frequency and impact on organ retrieval.

Complication	Incidence (%)
Intravenous vasopressor requirement	97.1
Coagulopathy	55.1
thrombocytopenia	53.6
Diabetes insipidus	46.4
Cardiac ischemia	30.4
lactic acidosis	24.6
Renal failure in per cent	20.3
Acute respiratory distress syndrome	13

Sixty-nine organ donors



Cardiac Dysfunction

- Cushing's effect:
 - Hypertension, bradycardia, and irregular respiration
- Catecholamine surge (catecholamine storm)
 - Intense vasoconstriction, raised systemic vascular resistance, and tachycardia
 - Severe hypertension
 - Central redistribution of blood volume, increased afterload, and visceral ischemia.
 - Stunned myocardium
 - Coronary vasoconstriction
 - Cardiac arrhythmias
 - Myocardial injury occurs in 20–25% of DBD hearts
 - Echocardiographic evidence of myocardial dysfunction is seen in 40%:
 - Impaired LV contractility/hypokinesis
 - Subendothelial ischemia
 - Focal myocardial necrosis
 - Endothelial injury

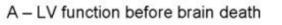
Autonomic Storm

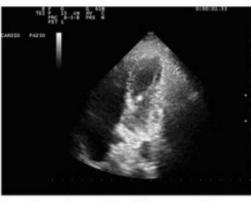
Cardiac dysfunction following brain death after severe pediatric traumatic brain injury:

Early Echocardiogram Findings In Final Sample Of Severe Pediatric Traumatic Brain Injury Without Brain Death (N=22) And TBI With Brain Death (N=10)

	All Severe TBI (N=32) (%)	Severe TBI without	Severe TBI with brain death (<i>N</i> = 10) (%)	P (0.025 = significant)
		(N=32) (%) brain death (N=22) (%)		
LVEF				
Low (LVEF < 50%)	5 (15.6)	1 (4.5)	4 (40)	0.024
Normal (LVEF ≥50%)	27 (84.4)	21 (95.5)	6 (60)	
RWMA grade				
Normal	25 (78.1)	19 (86.4)	6 (60)	0.165
Abnormal	7 (21.9)	3 (13.6)	4 (40)	
Mild hypokinesis	3 (9.4)	2 (9.1)	1 (10)	
Severe hypokinesis	3 (9.4)	1 (4.5)	2 (20)	
Akinesis	1 (3.1)	0	1 (10)	
Dyskinesis	0	0	0	

TBI = Traumatic brain injury, LVEF = Left ventricular ejection fraction, RWMA = Regional wall motion abnormalities


Electrocardiographs Findings in Brain Death; Description and Presumed Mechanism


Table 2—Electrocardiographic Findings in 28 Cases of Brain Death*			
ECG findings	No of cases		
Broadening of the terminal part of the QRS			
complex (J wave)	24		
Prolonged QT interval	21		
ST depression, negative T waves	16		
ST elevation	5		
Flat T waves	9		
Giant T waves	1		
Prolonged PR interval	2		
Broad and notched P waves	1		
Arrhythmia	1		
Normal tracing	1		

Serial Four Chamber Cineloops Of A Potential Heart *icu* **Donor With Hemodynamic Instability**

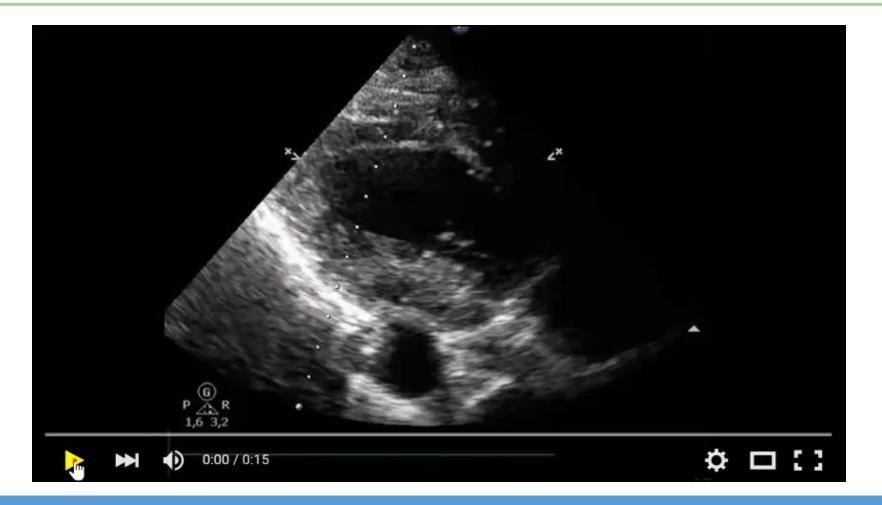
Normal LV function before brain death

C - One day after Hormonal T.

Reduction of end-systolic volume and improved systolic thickening. One day after early and aggressive hormonal treatment, including triiodothyronine, vasopressin, insulin and methylprednisolone with improvement of heart function

B-LV dysfunction at brain death

D – Two days after Hormonal T.



Takotsubo-like LV dysfunction immediately after subarachnoid hemorrhage and brain death: echocardiographically detected left ventricular systolic dysfunction excludes this heart from transplant according to standard criteria

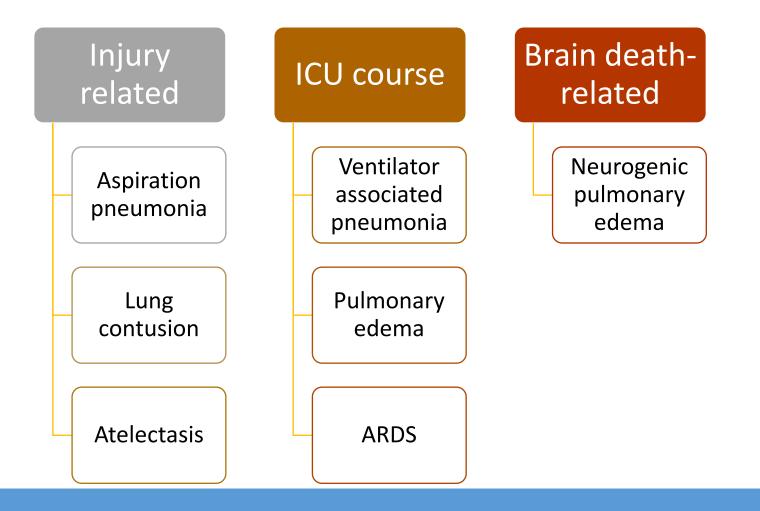
Two days after hormonal treatment the heart definitively normalized, was retrieved and was successfully transplanted. An additional movie file shows this in more detail

Balloon Cardiomyopathy: Takotsubo

Hypotension in the Potential Organ Donor

Hypovolemia	Cardiac Dysfunction	Vasodilatation
 Absolute Initial Injury Inadequate resuscitation Third spacing ICP Treatment Dehydration Mannitol Hyperglycemia-induced and osmotic diuresis Diabetes insipidus Hypothermia "cold" diuresis Posodilatation Loss of vasomotor tone and pooling Rewarming of hypothermia 	 Pre-existing disease Initial injury: Myocardial contusion Pericardial tamponade Myocardial ischemia/infarct Brain-death process: Catecholamine-ca process Ischemia-reperfusion injury Metabolic depression: Acidosis Hypothermia Hypophosphatemia Hypocalcemia Endocrinopathy of brain death Volume overload-CHF Arrhythmias Catecholamine Ischemia 	 Spinal shock Catecholamine depletion Loss of vasomotor control and autoregulation Relative adrenal insufficiency of trauma/critical illness Endocrinopathy of brain death Acquired sepsis

• Hypokalemia/hypomagnesemia

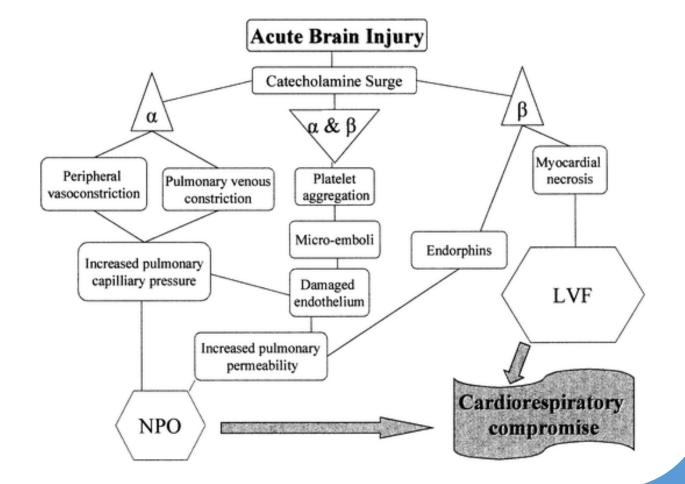


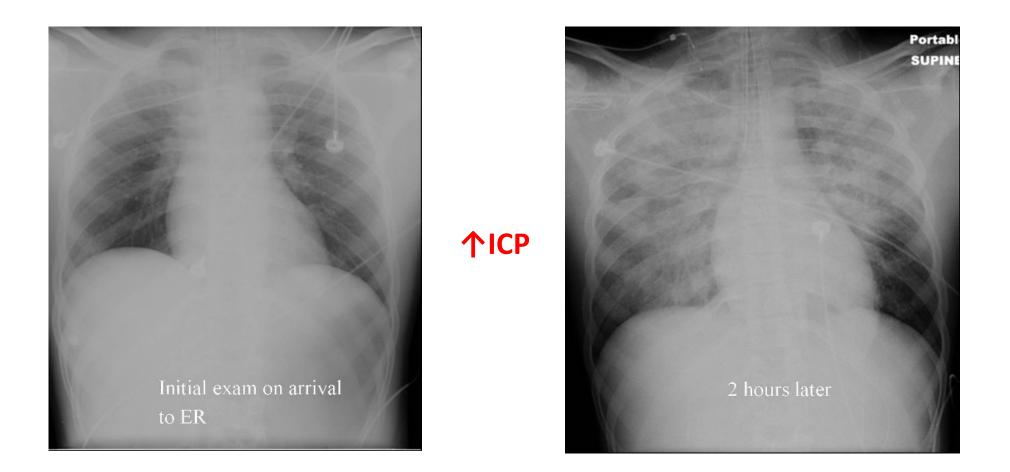
Cardiac Arrhythmias

- Etiology:
 - Catecholamine storm
 - Myocardial injury
- Atrial tachycardia
- Ventricular arrhythmias

Respiratory Dysfunction

Neurogenic Pulmonary Edema


- The lungs are highly susceptible to injury resulting from the rapid changes that occur during the catecholamine storm
- Left-sided heart pressures exceed pulmonary pressure, temporarily halting pulmonary blood flow
- The exposed lung tissue is severely injured, resulting in interstitial edema and alveolar hemorrhage, a state commonly referred to as neurogenic pulmonary edema


Neurogenic Pulmonary Edema: Blast Theory

- Massive sympathetic discharge
- Systemic arterial hypertension, peripheral vasoconstriction, increased pulmonary arterial pressure and pulmonary mircovascular vasoconstriction
- Pulmonary congestion with development of pulmonary edema
- Endothelial damage

Neurogenic Pulmonary Edema

Acta Anaesthesiol Scand 2009; 53: 425-435 Printed in Singapore. All rights reserved © 2009 The Author Journal compilation © 2009 The Acta Anaesthesiologica Scandinavica Foundation

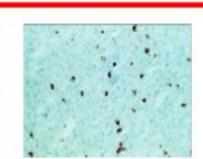
> ACTA ANAESTHESIOLOGICA SCANDINAVICA doi: 10.1111/j.1399-6576.2008.01879.x

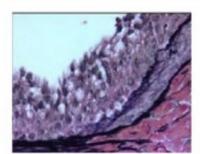
Systemic inflammation in the brain-dead organ donor

A. BARKLIN

Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark

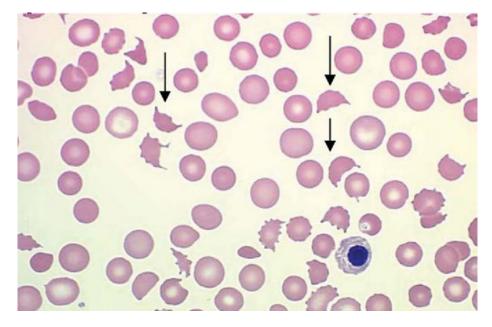

Brain death itself impairs organ function in the potential donor, thereby limiting the number of suitable organs for transplantation. In addition, graft survival of kidneys obtained from brain-dead (BD) donors is inferior to that of kidneys obtained from living donors. Experimental studies confirm an inferior graft survival for the heart, liver and lungs from BD compared with living donors.


The mechanism underlying the deteriorating effect of brain death on the organs has not yet been fully established. We know that brain death triggers massive circulatory, hormonal and metabolic changes. Moreover, the past 10 years have produced evidence that brain death is associated with a systemic inflammatory response. However, it remains uncertain whether the inflammation is induced by brain death itself or by events before and after becoming BD.


The purpose of this study is to discuss the risk factors associated with brain death in general and the inflammatory response in the organs in particular. Special attention will be paid to the heart, lung, liver and kidney and evidence will be presented from clinical and experimental studies.

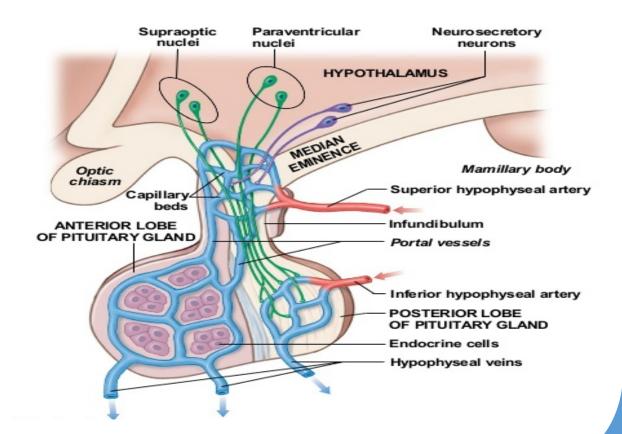
Accepted for publication 17 November 2008

© 2009 The Author Journal compilation © 2009 The Acta Anaesthesiologica Sandinavias Foundation



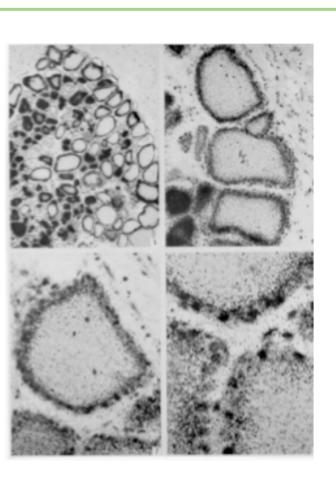
Release of Plasminogen Activator \rightarrow DIC

- Results from the passage of necrotic brain tissue into the circulation
- Leads to coagulopathy and sometimes progresses further to DIC
- DIC may persist despite factor replacement requiring early organ recovery
- (Also affected by hypothermia, release of catecholamines & hemodilution as a result of fluid resuscitation)



Hypothalamic — Pituitary Axis

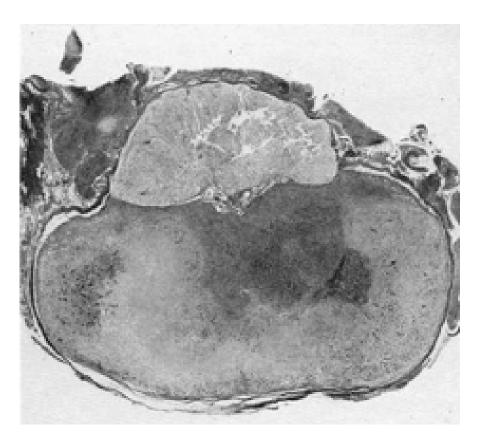
- Hypothalamus
 - Located at base of brain
 - Superior hypophyseal artery blood supply
- Pituitary


Ę

- Anterior (adenohypophysis)
 - Portal venous system from HTM
 - Release of ACTH, GH, LH, FSH, TSH
- Posterior (neurohypophysis)
 - Inferior hypophyseal artery blood supply
 - Neuronal connections from HTM SO and PV nuclei
 - Release of vasopressin and oxytocin

Effects of Thyroid Hormones on Heart

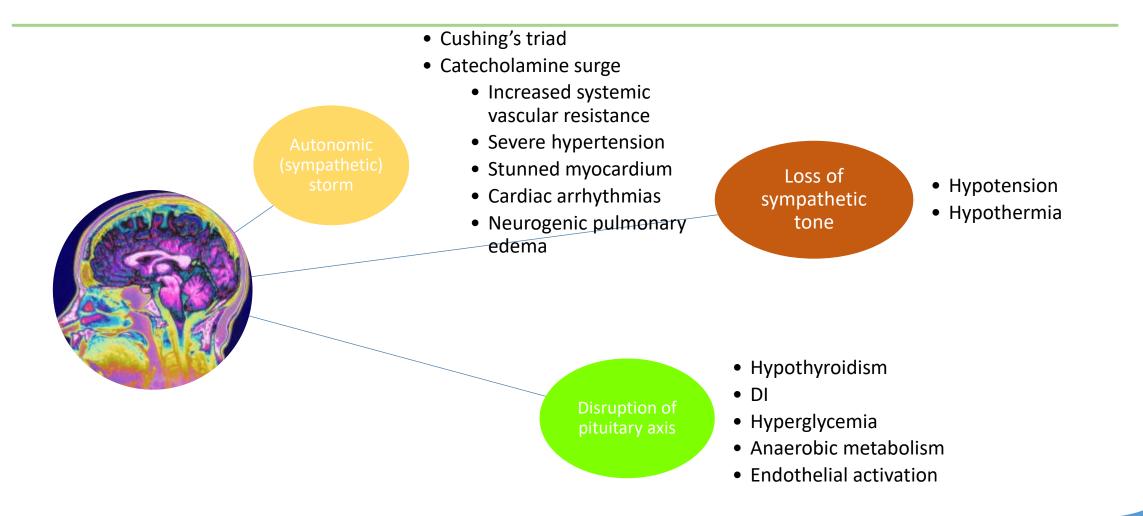
- Increase in cardiac output
 - Chronotropy via beta-adrenergic receptor upregulation
 - Vasodilatation
 - Non-shivering thermogenesis
 - Direct vasodilatory effects on smooth muscle
 - Increased blood volume
 - Stimulate production of erythropoeitin
 - Activation of RAA axis
 - Increase myocardial contractility via increased Ca++



Neuroendocrine Dysfunction

- 40% of patients with acute brain injuries
- Autopsy studies: evidence of pituitary hemorrhage or necrosis in 80% of patients following TBI
 - Diffuse brain injury
 - Hemorrhage
 - Herniation
- May develop subacutely

after TBI


Disruption of Pituitary Axis

- Hypothyroidism
- Diabetes insipidus
- Decreased cortisol
- Decreased insulin and hyperglycemia
- Endothelial activation
- Diffuse vascular regulatory impairment
- Diffuse metabolic cellular injury and Anaerobic metabolism
- Progressive deterioration of organ function

Summary

